Location of carcinoma emulators in experimental breast models using electrical impedance tomography based on linear back projection
PDF (Español (España))
XML (Español (España))

Keywords

impedancia
cáncer de mama
tomografía
emuladores de tejido
salud
carcinomas
salud femenina
mama femenina
mapas de sensibilidad
tecnología
medicina
oncología
mujer
diagnóstico impedance
breast cancer
tomography
tissue emulators
health
carcinoma
female health
sensitivity maps
technology
medicine
oncology
woman
diagnosis

How to Cite

Gutiérrez-López, M., Díaz-Carmona, J., Prado-Olivarez, J., Gutiérrez-Gnecchi, J. A., Rodríguez-Frías, M. A., & Francisco-Martínez, C. (2020). Location of carcinoma emulators in experimental breast models using electrical impedance tomography based on linear back projection. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2450

Abstract

Introduction: The electrical impedance measurement and characterization of biological tissues allow to distinguish between a healthy and pathological tissues. The use of techniques such as electrical impedance tomography is widely used in clinical testing through various applications. In this work the Linear Back Projection (LBP) method is employed to reconstruct images from electrical impedance measurements in order to obtain the location of carcinoma emulator previously inserted within female-breast-shaped agar-agar models.

Method: A ring arrangement of eight electrodes was used for measuring the impedance on the seven female-breast-shaped agar-agar models. A cross section of a healthy female breast (without emulators) corresponding to the measurement plane of the ring electrode arrangement was designed and simulated in the COMSOL software. The sensitivity maps of each pair of electrodes along the impedance measurement were computed using the conductivity distribution data obtained from the simulated model. Finally, the reconstruction of the electrical tomography images was achieved by applying the LBP algorithm to the electrical impedance values measured form the electrode ring arrangement.

Results: The sensitivity maps were computed from the electrical impedance measurements for each defined experimental model. As a result, a sensitivity matrix characterizing the electrical potentials distribution within the simulated measurement plane in COMSOL was obtained. The zone locations for all the experimental models with carcinomas emulators inserted outside the center of the electrodes ring arrangement were correctly obtained.  

Discussion or Conclusion: According to the results obtained from the described project, the proposed methodology allows the generation of images to locate carcinoma emulators with approximate diameters of 1 cm through a non-iterative approach. Therefore, the location does not require a high computational complexity. The localization of a carcinoma emulator inserted on the central zone of the female breast model was not correctly obtained due to the low sensitivity of the electrode ring arrangement in such zone.

https://doi.org/10.21640/ns.v12i25.2450
PDF (Español (España))
XML (Español (España))

References

Borisc, A., Graham, B. M., Adler, A., and Lionheart, W. R. (2009). In vivo impedance imaging with total variation regularization. IEEE Transactions On Medical Imaging, 29(1), 44-54. DOI: 10.1109/TMI.2009.2022540

Brown, B. H. (2003). Electrical impedance tomography (EIT): a review. Journal of medical engineering & technology, 27(3), 91-108.

Cherepenin, V. A., Karpov, A. Y., Korienevsky, A. V., Kornienko, V. N., Kultiasov, Y. S., Ochapkin, M. B., y otros. (2002). Three-dimensional EIT imaging of breast tissues: system design and clinical testing. IEEE Transactions On Medical Imaging, 21(3), 662-667. DOI: 10.1109/TMI.2002.800602

Cherepenin, V., Karpov, A., Korjenevsky, A., Kornienko, V., Mazaletskaya, A., Mazourov, D., & Meister, D. (2001). A 3D electrical impedance tomography (EIT) system for breast cancer detection. Physiological measurement, 22(1), 9-18.

de Castro Martins, T., Sato, A. K., de Moura, F. S., de Camargo, E. D., Silva, O. L., Santos, T. B., y otros. (2019). A review of electrical impedance tomography in lung applications: theory and algorithms for absolute images. Annual Reviews in Control, 48, 442-471.

de Gelidi, S., Seifnaraghi, N., Bardill, A., Wu, Y., Frerichs, I., Demosthenous, A., y otros. (2020). Towards a thoracic conductive phantom for EIT. Medical Engineering & Physics, 77, 88-94.

Dikin, F., & Wang, M. (1996). Electrical resistance tomography for process aplication. Measurement Science and Technology, 7(3), 247-260.

Frerichs, I. (2000). Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiological measurement, 21(2), R1-21.

Frías, M. A., & Yang, W. (2017a). Effect of parasitic resistance in electrical resistance tomography with voltage excitation. In 2017 IEEE International Conference on Imaging Systems and Techniques (IST), 1, 1-6.

Frías, M., & Yang, W. (2017b). Real-time model-based image reconstruction with a prior calculated database for electrical capacitance tomography. Measurement Science and Technology, 28(5), 054006. DOI:10.1088/1361-6501/aa6221

Gutiérrez-López, M., Prado-Olivarez, J., Díaz-Carmona, J., Herrera-Ramírez, C. A., Gutiérrez-Gnecchi, J. A., & Medina-Sánchez, C. G. (2019). Electrical Impedance-Based Methodology for Locating Carcinoma Emulators on Breast Models. Journal of Sensors, 2019, 1-16.

Hähnlein, C., Schilcher, K., Sebu, C., & Spiesberger, H. (2011). Conductivity imaging with interior potential measurements. Inverse Problems in Science and Engineering, 19(5), 729-750.

Halter, R. J., Hartov, A., & Paulsen, K. D. (2008). A broadband high-frequency electrical impedance tomography system for breast imaging. IEEE Transactions On Biomedical Engineering, 55(2), 650-659. DOI: 10.1109/TBME.2007.903516

Halter, R. J., Hartov, A., Poplack, S. P., Wells, W. A., Rosenkranz, K. M., Barth, R. J., & Paulsen, K. D. (2014). Real-time electrical impedance variations in women with and without breast cancer. IEEE Transactions On Medical Imaging, 34(1), 38-48. DOI: 10.1109/TMI.2014.2342719

Hannan, S., Faulkner, M., Aristovich, K., Avery, J., Walker, M. C., & Holder, D. S. (2020). In vivo imaging of deep neural activity from the cortical surface during hippocampal epileptiform events in the rat brain using electrical impedance tomography. NeuroImage, 209, 116525.

Harikumar, R., Prabu, R., & Raghavan, S. (2013). Electrical impedance tomography (EIT) and its medical applications: a review. Int. J. Soft Comput. Eng, 3(4), 193-198.

Holder, D. (2004). Electrical Impedance Tomography Methods, History and Applications. CRC Press.

Jossinet, J., & Schmitt, M. (1999). A review of parameters for the bioelectrical characterization of breast tissue. Annals of the New York academy of sciences, 873(1), 30-41.

Kantartzis, P., Abdi, M., & Liatsis, P. (2013). Stimulation and measurement patterns versus prior information for fast 3D EIT: A breast screening case study. Signal processing, 93(10), 2838-2850.

Kerrouche, N., McLeod, C. N., & Lionheart, W. R. (2001). Time series of EIT chest images using singular value decomposition and Fourier transform. Physiological Measurement, 22(1), 147. DOI: 10.1088/0967-3334/22/1/318

Khalighi, M., & Mikaeili, M. (2019). Modified weighted back-projection algorithm (MWBP) for 3D electrical impedance mammography systems with the planar electrode array. Biomedical Physics & Engineering Express, 5(6), 065020.

Khan, S., Manwaring, P., & Halter, R. J. (2014). FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography. IEEE Transactions On Medical Imaging, 34(4), 888-901. DOI: 10.1109/TMI.2014.2367315

Lee, E., Ts, M. E., Seo, J. K., & Woo, E. J. (2012). Breast EIT using a new projected image reconstruction method with multi-frequency measurements. Physiological measurement, 33(5), 751.

Ma, Y., Wang, H., Xu, L. A., & Jiang, C. (1997). Simulation study of the electrode array used in an ERT system. Chemical engineering science, 52(13), 2197-2203.

Murphy, E. K., Mahara, A., & Halter, R. J. (2016). Absolute reconstructions using rotational electrical impedance tomography for breast cancer imaging. IEEE Transactions On Medical Imaging, 36(4), 892-903. DOI: 10.1109/TMI.2016.2640944

Murphy, E. K., Mahara, A., Wu, X., & Halter, R. J. (2017). Phantom experiments using soft-prior regularization EIT for breast cancer imaging. Physiological measurement, 38(6), 1262.

Nakae, Y., Onouchi, H., Kagaya, M., & Kondo, T. (1999). Effects of aging and gastric lipolysis on gastric emptying of lipid in liquid meal. Journal of gastroenterology, 34(4), 445-449.

Ng, E. Y., Sree, S. V., Ng, K. H., & Kaw, G. (2008). The use of tissue electrical characteristics for breast cancer detection: a perspective review. Technology in cancer research & treatment, 7(4), 295-308.

Nombo, J., Mwambela, A., & Kisangiri, M. (2016). A review of image reconstruction methods in electrical capacitance tomography. Journal of Mathematics and Computer Science, 6(1), 39-57.

Pak, D. D., Rozhkova, N. I., Kireeva, M. N., Ermoshchenkova, M. V., Nazarov, A. A., Fomin, D. k., y otros. (2012). Diagnosis of breast cancer using electrical impedance tomography. Biomedical Engineering, 46(4), 154-157. DOI: https://doi.org/10.1007/s10527-012-9292-7

Poplack, S. p., Tosteson, T. D., Wells, W. A., Pogue, B. W., Meaney, P. M., Hartov, A., y otros. (2007). Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms. Radiology, 243(2), 350-359.

Qiao, G., Wang, W., Wang, L., He, Y., Bramer, B., & Al-Akaidi, M. (2007). Investigation of biological phantom for 2D and 3D breast EIT images. In 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography, 1, 328-331

Sabatier, P. C., & Sebu, C. (2007). On the resolving power of electrical impedance tomography. Inverse problems, 23(5), 1895.

Sadlier, R. J., Sajib, S. Z., Kim, H. J., Kwon, O. I., & Woo, E. J. (2013). Simulation and phsntom evaluation of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection. Journal of Magnetic Resonance, 230, 40-49.

Sapuan, I., Yasin, M., Ain, K., & Apsari, R. (2020). Anomaly Detection Using Electric Impedance Tomography Based on Real and Imaginary Images. Sensors, 20(7), 1907.

Surowiec, A. J., Stuchly, S. S., Barr, J. R., & Swarup, A. A. (1988). Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Transactions on Biomedical Engineering, 35(4), 257-263. DOI: 10.1109/10.1374

Tidswell, A. T., Gibson, A., Bayford, R. H., & Holder, D. S. (2001a). Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank. Physiological measurement, 22(1), 177-185.

Tidswell, T., Gibson, A., Bayford, R. H., & Holder, D. S. (2001b). Three-dimensional electrical impedance tomography of human brain activity. NeuroImage, 13(2), 289-294. DOI: 10.1006/nimg.2000.0698

Trokhanova, O. V., Okhapkin, M. B., & korjenevsky, A. V. (2008). Dual-frequency electrical impedance mammography for the diagnosis of non-malignant breast disease. Physiological measurement, 29(6), S331-S344.

Vaisman, N., Weintrob, N., Bluemental, A., Yosefsberg, Z., & Vardi, P. (1999). Gastric emptying in patients with type I diabetes mellitus. Annals of the New York Academy of Sciences, 873(1), 506-511.

Wang, W., Tang, M., McCormik, M., & Dong, X. (2001). Preliminary results from an EIT breast imaging simulation system. Physiological measurement, 22(1), 39-48.

Yang, E. Q., Spink, D. A., York, T. A., & McCann, H. (1999). An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Measurement Science and Technology, 10(11), 1065-1069.

Zhang, L. (2011). Image reconstruction algorithm for electric imepdance tomography using updated sensitiviry matrix. In 2011 International Conference of Soft Computing and Pattern Recognition, 1, 248-252.

Zou, Y., & Guo, Z. (2003). A review of electrical impedance techniques for breast cancer detection. Medical engineering & physics, 25(2): 79-90.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia